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Abstract 
Algorithms for the subtraction of backgrounds from y-y matrices and higher-fold data sets, obtained from in-beam 

HPGe coincidence experiments with heavy-ion-induced nuclear reactions, are described. The backgrounds are parameterized 
as the cross-products of lower-dimensional projections of the data and a one-dimensional background spectrum. A novel 
method of correcting for a mixture of different reaction channels in the complete data set, by making use of one or more 
gates on background channels in the energy region of the “E2 bump”, is presented. In many cases, this new method 
provides a significantly better description of the background. 

1. Introduction 

Modern HPGe detector arrays have revolutionized in- 
beam y-ray studies, especially for high-spin nuclear struc- 
ture physics with heavy-ion fusion-evaporation reactions. 
In the analysis of data from such arrays, one often creates 
two-dimensional histograms from double-coincidence data, 
or three-dimensional histograms from triple-coincidence 
data, and then proceeds to set “gates”, i.e. specify ener- 
gies for all but one of the axes and inspect the projection 

onto the remaining axis. More sophisticated procedures 
(e.g. Refs. [1,2]) may attempt to perform least-squares fits 
directly to the multi-fold data to extract coincident peak 
areas and energies. In either case, it is usually necessary to 
correct the data for background counts underlying the 
peaks in the gate spectrum or fitted region, arising from 
both Compton-scattered -y-rays and quasicontinuum transi- 
tions. 

One common method for correcting for the background 
underlying a gate on a peak is to set additional gates on 
background regions near the peak, and subtract a normal- 
ized fraction of the resulting projection from that obtained 
with the primary gate. (In three- and higher-fold data, 
combinations of peak and background gates are used.) In 
practise, however, it is often not possible to find a back- 
ground region free from weak contaminant peaks. This 
procedure also introduces more statistical uncertainty into 
the results than is strictly necessary, since the background 
spectrum has a similar number of counts to the primary 
(peak) spectrum. In addition, this method does not remove 
all of the background counts from the resulting spectrum; 
i.e. the result still contains counts from Compton-scattered 
y-rays and quasicontinuum transitions in true coincidence 
with the peak. Therefore, when a direct least-squares anal- 
ysis of the peaks in a multi-fold data set is desired, this 
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procedure cannot be used, and some other method of 
determining the background must be found. 

A second method that is commonly used for two-di- 
mensional data is to subtract a fraction of the total one-di- 
mensional projection from the gated spectrum, normalized 
so that the total counts subtracted corresponds to an esti- 
mate of the background counts in the gate. This procedure 
does not have the problem of introducing additional statis- 
tical uncertainty, but still does not remove coincident 

background counts from the spectrum. Generalisations of 
this method to higher folds have also been made (e.g. Ref. 

t311. 
Palameta and Waddington [4] have reported a method 

of subtracting the background directly from two-dimen- 
sional y-y histograms (“matrices”). The present paper 
reports a prescription similar to that of Ref. [4] but some- 
what simpler. The limitations of this and other prescrip- 
tions are discussed. In particular, for nuclei populated in 
heavy-ion fusion-evaporation reactions, correlations of the 
background with the reaction channel (i.e. different resid- 
ual nuclei) can pose a significant problem. We therefore 
present an extension to the basic method which allows a 
correction for the different reaction channels typically 
present in a data set. Extensions to three- and higher-di- 
mensional data sets are also given. 

2. Principles of the method 

In order to give a simple description of the method, we 
will begin by discussing two-dimensional (2D) y-y data 
sets. Extensions to higher folds will be presented later. 

Analysis of a y-y data set will typically begin with 
generating a “matrix”, or 2D histogram of counts vs. 
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energy vs. energy. This matrix is then usually sym- 

metrised, so that the two energy axes are equivalent. 

Let the counts in such a data set be represented by Mij, 
where i and j indices are the channels corresponding to 
the y-ray energies. The one-dimensional (1D) projection of 

the matrix is then 

P,= CMij. 
i 

Let us divide the counts in this projection into a “back- 
ground” spectrum bi and a “peak” spectrum pi, such 

that 

P,=b,+pi. 

The details of how this is done need not greatly concern us 
here; the sensitivity of the resulting 2D background to this 
partition is addressed below. For now, it will be sufficient 

to imagine that an experimenter “draws” the 1D back- 
ground bi below the peaks in the projection in order to 

define the two spectra. 

(1) 

The second procedure mentioned above in the introduc- 

tion (subtracting part of the 1D projection) would then 

correspond to subtracting the 2D background 

Bij = $,P, 

=;(f+,+b,p,). 

where 

T= xMij= CP, 
ij i 

(2) 

is the total number of counts in the matrix. This 2D 
background is not symmetric, and would be used for gates 
set on the i-axis and projected onto the j-axis. 

As mentioned above, this does not remove the back- 
ground counts in coincidence with the peak of the gate. In 

(b) Gate at 857 keV 

4x104 

(c) Gate at 957 keV 

400 

200 

(d) Double gate at 857.957 keV 

Fig. 1. Spectra from the reaction lz4Sn +30Si at 158 MeV, studied with the EUROGAM 1 spectrometer [5]. Shown are: (a) the total 1D 

projection and background spectra; (b), (c) two background-subtracted gated spectra from a 2D matrix; and (d) background-subtracted 

double-gated spectrum generated by setting the two gates together on a 3D cube and projecting the result onto the third dimension. 



308 D.C. Radford / Nucl. Instr. and Meth. in Phys. Rex A 361 (1995) 306-316 

order to do this, and to maintain symmetry, we extend the 

procedure and use the following 2D background: 

Fig. 1 illustrates the use of this background for data 

from the reaction ‘“Sn +30Si at 158 MeV, studied with 
the EUROGAM 1 spectrometer 151. Shown are the total 1D 
projection and “drawn” background spectra, together with 
two background-subtracted gates on a 2D matrix. It is 
remarkable how well such a simple background is able to 
represent the true observed background. Also shown is a 

background-subtracted spectrum generated by setting both 
of the two gates together on a 3D cube and projecting the 
result onto the third dimension; this is discussed in Section 

5, where the extension of Eq. (3) to three-and higher-folds 
is presented. 

For the study of EY-Ey correlations in y-y coinci- 
dences, the COR [6] method can be used to generate a 
background with the same total number of counts (T) as 
the matrix; it corresponds to the simple 2D background 

BCoR = +?pj. 
‘I 

No net counts remain in the matrix after this subtraction. 

The technique presented here removes from such a 2D 
background the peak-peak part of the projection cross- 
product, and can in that sense be considered a refinement 

of the COR treatment. 
Our method is also related to that of Palameta and 

Waddington [4]. In our nomenclature, their 2D background 

can be rewritten as: 

Bipy = f ( b,P; + l’;bj -Abibj). 

Here the 1D spectrum P,! is the projection of the matrix 

(b) Gate at 857 keV 

(c) Gate at 957 keV 

(d) Double gate at 857,957 keV 

L I 
200 600 

E, (ke:oPo 
1400 

Fig. 2. Spectra from the same data set and identical gates as for Fig. 1, but using a 1D background spectrum which has been renormalized 

by a factor of 0.9. Shown are: (a) the total 1D projection and renormalized background spectra; (b), (c) background-subtracted gated spectra 

from a 2D matrix; and Cd) background-subtracted double-gated spectrum. 
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for the set K of all channels for which Pi - bj is zero 

within statistical errors (i.e. all channels containing no 

significant peaks), 

3. Sensitivity of the method to the background spec- 
trum 

Pi = c Mij, 
jGK 

and the constants S and A are defined as 

s= CP:, 

A = c P;/S. 
iEK 

If we expand the set K to include all channels of the 

j-axis, then we get 

P: = Pi, 

S= T, 
A=l, 

and the background of Palameta and Waddington reduces 

to that of Eq. (3). 

The use of Eq. (3) requires the definition of the back- 

ground spectrum bj. One can define this spectrum simply 
by drawing a piecewise-linear curve below the visible 
peaks in the total projection. Since this is clearly a subjec- 

tive procedure, it is important to examine the sensitivity of 
the final result to this 1D background spectrum. 

A simple way of doing this is to define an alternative 
background spectrum, bi, for example by multiplying bi 
by a factor 0.9. Thus we obtain 

b; = 0.9bi, 

p; = Pi - b; 

=pi + O.lb,, 

I I. I I I I I I I I I 
6006ocl loo0 12w 14m 600 600 1GfX 1200 1400 

E, &eV) E,. (kev) 

Fig. 3. Gated spectra from the reaction of l14Cd with 210 MeV 48Ca, taken with the EUROGAM 1 spectrometer. The background has been 

subtracted using the standard procedure of Eq. (3) (left-hand side, (a)-(f)), or using the improved procedure of Q. (11) (right-hand side, 

(g)-(l)). (a), <g>: Gate on the 443 keV transition in “‘Er. (b), (h): Double gate on the 443 and 522 keV transitions in 15’Er. CC), (i): Gate on 

the 527 keV transition in 15’Er. (d), (i)z Double gate on the 527 and 622 keV transitions in “‘Er. (e), (k): Double gate on the 464 and 556 

keV transitions in 15’ Er. (f), (1): Double gate on the 4.52 and 543 keV transitions in L56Er. 
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B:,=;(P~Pj-p:p;) 
p,b, and hip, are more sensitive. Thus, for gates with very 
small peak-to-background ratios, a poorly-defined 1D 

=~(~;P,-pi~j-O.lp,b,-O.lb,p,+O.Olhib,) 

0.1 
=B,j-‘T(p~bj+bipj-O.lbibj). (4) 

Since the bulk of the counts are in the PjPj term, rather 
than the pip, term, this renormalization of b, has only a 

relatively minor effect on the resulting 2D background. 
This can be illustrated by taking the same gates as in Fig. 
1, but now using this renormalized background; these 
spectra are shown in Fig. 2. It can be seen that even a 
relatively large change in 6, has quite a small effect, 

especially for the triples spectrum. 
As can be seen from Eq. (4), a change in bj has a very 

small effect on the bjbj term of B,,. However, the terms in 

background will result in strong peaks of the total projec- 
tion being oversubtracted or undersubtracted. 

Attempts have been made to develop techniques to 
automatically generate b, from Pi. These have not been 
very successful, in that the subjective technique of remov- 
ing the peaks by hand generally gives results at least as 
reliable as the automatic methods. 

Experience has shown that including in b, the shoul- 
ders and/or peaks arising from (n, n’y) events in the 

HPGe detector or surrounding material will generally re- 
sult in an improved background subtraction. Similarly, 
some experiments produce X-rays in strong coincidence 
with virtually all peaks of the spectrum, due to internal 
conversion of y-rays. In such cases, leaving the X-ray 
peaks in the bj spectrum will remove an average X-ray 
coincident intensity from the gated spectra. 

(a) Total projection and background 

6x10s 

22x105 

2 16x105 
Y 

g 14Xld 

: 10x105 

2 

” 6xld 

(b) E2-bump projection and background 

(c) Normalized differences 

Fig. 4. Illustration of the E2-bump correction for improved background subtraction. The spectra are from the reaction of ‘14Cd with 210 

MeV 48Ca, taken with the EUROGAM 1 spectrometer. Shown are: (a): Total 1D projection and background. Also shown are the limits of 

the gate set on the EZbump region, used to produce the spectrum in (b). (b): Gated EZbump 1D projection and background. (c): 

Normalized differences of the projections and backgrounds of parts (b) and (a). The normalization factor was chosen to be the ratio of the 

total counts in the projections, i.e. to give zero net counts in the projection difference. 
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4. Correction for multiple reaction channels 

When nuclei are produced at high spin with heavy-ion 
fusion-evaporation reactions, there are usually at least two 
or three strongly populated residues. For example, in the 
bombardment of ‘14Cd with 210 MeV 48Ca, the dominant 
reaction channels are “4Cd(48Ca, 4n)‘58Er and “4Cd(48Ca, 
5n)15’Er, while weaker reaction channels include 3n and 

6n evaporation, and pxn evaporation. 
If a residue is produced at higher spin, then more of the 

total energy is carried as rotational energy, so that less of 
the energy brought in by the reaction was available for the 
evaporation of particles. Thus, in the above example, ls8Er 
is generally produced with more angular momentum than 

15’Er. This extra angular momentum must then be re- 
moved by y-ray emission subsequent to the neutron evapo- 
ration, resulting in a higher average y-ray multiplicity. For 
collectively-rotating nuclei, most of the extra y-rays con- 
tribute to a quasicontinuum “E2 bump” in the energy 
region between 1 and 1.5 MeV. Consequently, the shape 
of this quasicontinuum -y-ray spectrum also differs be- 
tween reaction channels. In the type of background sub- 
traction described here, the quasicontinuum is considered 
to be part of the “background” we are subtracting, and 
this will give rise to reaction-channel-dependent effects. 

This can be seen in Fig. 3, where spectra from gates on 
strong ‘5h-‘5YEr y-ray transitions are shown. The spectra 
on the left have been background-subtracted with the 
procedure of Eq. (3). In the region between about 1000 
and 1500 keV there are serious problems with the back- 
ground; the 3n- and 4n-evaporation spectra are undersub- 
tracted, while the 5n and 6n are oversubtracted. Since we 
are subtracting an average background, the reaction-chan- 

nel dependence of the E2-bump strength is a serious 
problem. 

The effect that gives rise to this problem, however, also 
points the way to a solution. It is evident that setting a gate 
on background channels in the region of the E2-bump will 
effectively distinguish the reaction channel of strong peaks 

in the spectrum. It should then be possible to use this 
information to add a correction term to the background 
subtraction. 

This is illustrated in Fig. 4. The top panel shows the 
total 1D projection and background from the data set of 
Fig. 3. Also shown is a wide gate on the E2-bump region 
of the spectrum, from 1100 to 1600 keV, chosen to avoid 
strong peaks. When this gate is applied to the 2D data, the 
projection spectrum shown in the middle panel results. A 
1D background can be drawn for this E2-bump-gated 
spectrum in the same way as for the total projection. In the 
bottom panel, the E2-bump projection has had a fraction of 
the total projection subtracted, with a normalization factor 
chosen to give a net counts of zero in the difference 
spectrum. The difference in the background spectra, with 
the same normalization coefficient, is also shown. The 
positive (negative) peaks in the difference spectrum corre- 

spond to transitions from the 3n and 4n (5n and 6n) 

evaporation residues. It is also evident that the E2-bump is 
more intense in the E2-bump-gated projection than in the 

total projection. 
Let E be the set of channels included in the E2-bump 

gate(s), so that the E2-bump projection spectrum is 

si= CMij, 
jeE 

with a total counts of 

c= csj= c Pi. 
i ieE 

Let us divide the counts in the E2-bump projection into 
background and peaks, 

Si=si+ti, 

and define the difference spectra of Fig. 4c as 

d, = Di - ei 

C 
= s, - -pi. 

T 

In order to simplify the discussion which follows, we 
consider an experiment where the two primary reactions 

are (HI, xn) and (HI, (x + Ih). Let the 2D data, total 
projection and background be: 

Mij=M;+M;, 

P,=P/+P,b, 

b, = b; + b;, 

where the superscripts a and b represent spectra that would 
be obtained from pure (HI, xn) and (HI, (x + 1)n) data 
sets, respectively. We define 

T” = CP,“, 

jEE 

C” = Es;, 

where n = a, b. We also obtain 

T=Ta+Tb, 

s, = s,a + SF, 

etc. 
If the E2-bump gate on each of the individual reaction 

channels is well-reproduced by the background, then the 
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spectra S,? can be well represented by a fraction of the 
total projections Pi’, 

s; = ;p;. 

We therefore obtain 

= 

= (TV;’ - TT))f, 

dj = (T”p; - T”pf)f, 

ei = (Tbbf - T”bp)f, 

where 

CaTb - CbTa 

f= 
TT”Tb 

(9) 

For this two-reaction-channel data set, a more correct 

version of Eq. (3) would give the 2D background 

With some algebra (see Appendix A) we can now combine 
Eqs. 3, 6, 7 and 10 to get 

where 

F = f 2u"Tb = (CaTb - CbT”)2 
TTaTb ’ (12) 

-40000 - I, I I ’ 
1y 

‘” &l 5fk 
6n 617 6” 

sn , 

200 400 600 800 

EY (kev) 

(‘1) 

Fig. 5. (a), (b): Double-gated spectra from gates at 1340 keV and 208 keV. These transitions belong to different nuclei and are not in true 

coincidence. (c), (d): Spectra from a single gate set at 1340 keV. The background has been subtracted using the improved procedure of Eq. 

(11) ((a), (c)), or the standard procedure of Eq. (3) C(b), Cd)). The data set and backgrounds are identical to those of Fig. 3 and 4. Strong 

peaks in the spectra are labelled by the reaction channel. 
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We can evaluate the constant F by taking the sum of the 
difference spectrum Di over the EZbump gate(s) E, 

CDi= C 
iEE IEE 

C”Tb _ &-a 

z 

TT”Tb 
(TbCa - T”Cb) 

=F. (13) 

Thus we are able to eliminate the need to know the 
individual evaporation-residue projections in order to make 

use of Eq. (11). 
The effect of using this improved background subtrac- 

tion procedure is shown on the right-hand side of Fig. 3. 
The new method does not yield perfect results, especially 
in this case for the 6n reaction channel, presumably due to 
the fact that we have more than two reaction channels 
populated in the experiment. Nevertheless, there is a very 
significant improvement, especially in the region of the E2 

bump. 
When one sets gates on transitions in the energy range 

of the E2 bump, the effects of the new method are still 

more striking. Fig. 5 presents spectra from a single gate at 
1340 keV, and from a double gate at 1340 keV and the 3n 
-y-ray at 208 keV, with the background subtracted using 
the standard procedure (Figs. 5b and Sd) or the improved 
procedure (Figs. Sa and 5~). The data set and backgrounds 
used are the same as those of Figs. 3 and 4. The 1340 keV 
transition belongs to the 4n reaction channel and not to the 
3n channel, but it would be impossible to draw that 
conclusion based on Figs. 5b and 5d. 

An alternative and perhaps more intuitive way of view- 
ing this correction term is to consider the difference spec- 
trum Di as a gate on a matrix where the background of 
Eq. (3) has already been subtracted. That is, 

Dt= C (Mil-‘ij) 
IEE 

=q-; ,c (P;pi-p,p,) 
ICE 

=si- ;P, (14) 

since the gate E is assumed to include only background 
channels. We then use this projection Di and its peak and 
background spectra di, ei in the same way as for Eq. (31, 
except that we also need to replace the total counts 

T= CP, 

with 

F= c Di. 
iEE 

This then corrects the matrix for background correlations 
remaining in the E2 bump after the first background 

subtraction. Presumably, we could repeat this procedure 
for a second problem area, using the matrix which has 

been background-subtracted with Eq. (111 and a different 

gate. 
It should be emphasized that the problems presented by 

the EZbump are not restricted to the background-subtrac- 
tion method of Eq. 3. Any method that treats the back- 

ground as a fraction of some spectrum (such as the total 
1D projection) is prone to this problem, unless that spec- 

trum is derived directly from background gates set close to 
the gate of interest. It is also worth noting that the results 
presented here are not very sensitive to the actual gate(s) 

used to generate the EZbump projection. The main crite- 
rion is simply a sensitivity to the reaction-channel depen- 
dence of the E2 bump strength. While it is a good idea to 
exclude strong peaks, weak peaks such as those in Fig. 4a 
can be included with no observable effects. 

For residual nuclei that do not exhibit strong collective 
rotation at the spins at which they are populated, there is 
no strong E2 bump. For these cases, the variation of the 

intensity of the E2 bump with reaction channel is not as 
evident, and may be absent altogether for some reactions. 
For example, a comparison of the gates shown in Fig. 1 
with those in Fig. 3 shows that the effect is less pro- 
nounced for the noncollective nuclei ‘48’149Gd (although a 
close inspection reveals that the spectrum of Fig. lb is 
slightly oversubtracted in the region 1.0-1.6 MeV, and 
that of Fig. lc slightly undersubtracted). In cases where no 
reaction-channel fractionation is observed, the use of Eq. 
(111 over that of Eq. (3) is not necessary, and may in fact 
degrade the overall quality of the background subtraction. 

5. Extension to triples and higher folds 

The new spectrometers such as GAMMASPHERE and 
EUROGAM gain increased sensitivity by making use of 
high-fold coincidences to increase the peak-to-background 
ratio for y-ray coincidences. Since the background is 
reduced by more than an order of magnitude over that of 
double coincidences, one might conclude that background 
subtraction of quadruple- or quintuple-coincidence data 
should be less important. It must be remembered, however, 
that the goal of these instruments is to make use of the 
increased sensitivity to search for and examine transitions 
or cascades which are an order of magnitude weaker than 
those observed with earlier instruments. Thus the peak-to- 

background ratio at the limit of sensitivity is approxi- 
mately unchanged, and the background will have to be 
treated properly in order to correctly extract information 
from the new high-fold data sets. 

The procedures described here can be easily extended 
to triples and higher-fold coincidences. Figs. 1, 2 and 3 
show results for double gates on triples data sets, obtained 
with the extensions to Eq. (3) and (11) that are given 
below. Extensions of the Palameta-Waddington technique 
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to triples and higher folds are derived in Ref. [7]. Crowell 
et al. [3] have also developed a high-fold background-sub- 

traction algorithm which is in some respects similar to that 
of Eq. (15) and (16) below, except that they replace the 
spectrum bi with estimates of the background levels de- 

rived directly from the high-fold data in the region of the 
gate. They also do not subtract the background counts in 
coincidence with the (n-l)-fold peak portion of the gate on 

n-fold data. 
The extension of Eq. (3) is straightforward. We con- 

sider an n-fold cross-product of the 1D projection, keeping 
all terms that include at least one power of the spectrum b. 

For example, 

‘i’j’k=PiPjPk 

+tpiPjbk+PibjPk+b;PjPk 

+ Pib,bk + b, Plbk + b,bjPk 

+ bibjbk. 

To get the three-dimensional background Bi+ we drop the 
first term, replace the pp terms with the corresponding 
background-subtracted 2D projection (in order to include 

the proper coincidence relationships) and divide by powers 
of T (to get the correct dependence on the total number of 

events), 

B,,k=~[(Mij-~ij)bk+(M,k-B,k)bj 

+(Mjk-Bjk)bt] 

+A[Pcb,bk+biPjbk+b;bjPk+bib,bk]. 

By expanding BIj etc. through Eq. (31, we get 

B,jk=;[Mijb,+Mikbj+Mjkbi] 

+ $ [ -Pibib, - b;P,b, - b,b,P, + bibjb,] . 

(15) 

Similarly, for quadruple coincidences, we obtain 

Bijkl= i [ Cijk b, + C,, b, + Cikl bj + Cjlk bi] 

+$[ -Mijbkbr-Mikbjb,-i?4jkbibl-Mi,bjb, 

-Mjlbib, - Mklbibj] 

+~[Pibjb,b,+biP,b,b,+bibjPkb,+b,b,b,P, 

-b,bjb,b,] > (16) 

where CjIk is the three-dimensional (3D) projection of the 

4_dimensional(4D) data set. For completeness, we rewrite 
Eq. (3) in the same form as Eq. (15) and (16), 

Bij=;[Pibj+b,Pj-b,b,l. 

We see that in order to calculate the background, we 
require all of the projections of order less than the coinci- 
dence fold, in addition to the 1D background spectrum. 

The same is true for the extension of Eq. (ll), except that 
in that method we also require all the E2-bump-gated 
projections and the corresponding 1D background spec- 

trum. 
Using the format of Eq. (15), the triples version of Eq. 

(11) reduces to 

B:,, = Bijk + k [ N,,e, + Nikej + N,,e,] 

u 
-Qiejek - e,Q,e, - eiejQk + ,eieje, . 1 

(17) 

where 

4j = C (‘zjk - Bi,k) 
kcE 

(18) 

Qi= C4j 
jEE 

=,~~k~~c,jk-~(cs.+cDI+Fb,) 

= c c c,,,-;(2CDi+$Pi+Fbj), (19) 
jEE kGE 

U= CQ, 
itE 

= c c c .,-;(3CF+$), 
icE jcE kEE 

(20) 

are the E2-bump-gated projections of the background-sub- 
tracted cube. Using the arguments of the previous section 
and algebra similar to that of Appendix A, one can show 
that the correct 3D background for our data set with two 
reaction channels reduces to Eq. (17). 

Similarly, the quadruples version of Eq. (11) is 

B:,kl = Bijkl +  i [ Gijkel + Gljrek + Gikrej + G,,,e,] 

1 
+ F? [ -Oijeke, - O,,e,e, - Ojkeie, - Oirejek 

-Ojle,e, - Ok,eiej] 

1 
+ - Riejeke, + eiR,eke, + e,e,R,e, 

F’ [ 
V 

+eieje,R, - Feiejekel , 1 (21) 
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where 

Gijk = C ( Hijkl - Bijkl) f 

ICE 

Nij = C Gilk 7 

k=E 

V= C Qi, 
iEE 

are the E2-bump-gated projections of the background-sub- 
tracted 4D data set (hypercube) Hijkl. 

Hackman and Waddington [7] have developed a very 
elegant notation of using operators to describe the process 

of background subtraction. In our case, the operator for the 
standard background subtraction is 

&=I-;? 
I 

for each dimension. Thus, for example, 

= Mi, - B,j. 

Similarly, 

Pi PI PkCijk = ‘ijk - Bijk 

etc. The operator to apply the additional E2-bump correc- 
tion is 

l i=1-;& 
I 

for each dimension, so that 

eiej pi PjMij = Mij - Bij, 

ci ‘j Ek Pi pj fikcl jk = Cijk - &jk t 

etc. 
One final remark should be made about background 

subtraction for triples and higher-fold data. We have as- 
sumed throughout the discussion here that the quasicontin- 
uum part of the background is uncorrelated, that is, that the 
2D background-background coincidences are well-de- 
scribed by the tensor cross-product of the 1D background 
spectrum b; (with the exception of the E2 bump). While 
this turns out to be a reasonable approximation, it has long 
been known (e.g. Ref. [6]) that there is often a valley along 
the diagonals of the data; events where E,, = EY2 are 
slightly less likely than expected from uncorrelated back- 
grounds. For 2D data, this problem can be alleviated to 
some extent by using local backgrounds. 

This valley is even deeper along the major diagonal 

(E,, = E,, = Ey3) in triples data, so at first it might be 

expected that the 3D background from the prescriptions 
described in this paper would be poorer in this respect than 
that for 2D data. This, however, turns out not to be the 

case. Referring to Eq. (151, one sees that the 2D correla- 
tions for i = j, i = k and j = k are included in the terms 
M,,b,, Mi, b, and Mjkbi, respectively. Experience indi- 
cates that these terms tend to cancel the background 
correlations in the y-y-y cube. 

6. Conclusion 

Background-subtraction algorithms for in-beam HPGe 

coincidence data have been presented. The backgrounds 
are parameterized as the cross-products of lower-dimen- 

sional projections of the data and a one-dimensional back- 
ground spectrum. A novel method of correcting for a 
mixture of different reaction channels in the complete data 
set is described. This method makes use of one or more 

gates on background channels in the energy region of the 
“E2 bump”, and provides a significantly better descrip- 

tion of the background for nuclei exhibiting strong collec- 
tive rotation at high spins. 

The prescriptions for background subtraction described 
here are simple, fast and reliable. The results seem to be 
reasonably insensitive to the particulars of the chosen 
background spectra and to the gate used to generate the 
E2-bump correction terms. 
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Appendix A. Algebra for the EZ-bump correction in 
two dimensions 

We have (from Eq. (10)) 

_’ b b+ -& 
TbPiPl T t I’ 
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Collecting the terms of type PP together and making 

use of Eqs. (6), (9) and (12), we get 

&&T; + $PFPib - ;PiPj 

= +;p; + $pppp - $J;p, - ;P;Pi 

= -&(Tp;- z-“p,) + $P/(Tqb- TbPj) 

1 1 
= =P;D, - --+PD’ 

= ---&(TbP; - T”P,“)Dj 

1 

= mDiDi 

= ~D~D). 

Similarly, collecting the terms of type pp together, we 
have 

1 1 1 
@pi” + $p;p; - ,p,p, = kdidj 

and thus 

B:,=Bij+;(D,Dj-did,). 
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