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a b s t r a c t

A reliable and simple-to-use algorithm was developed for the energy-calibration of double-sided silicon
strip detectors (DSSSDs). It works by enforcing mutual consistency of p-side and n-side information for
every detected event. The procedure does not rely on a dedicated data set for calibration and is robust
enough to work fully automated without human supervision. The method was developed and applied to
data from a DSSSD of the Lund-York-Cologne CAlorimeter (LYCCA) for the HISPEC experiment at FAIR. It
has been tested on ions in the A� 90 mass range at energies of Ekin � 300 MeV=u.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Double-sided silicon strip detectors (DSSSDs) are widely used for
charged particle detection in nuclear and particle physics experi-
ments to obtain position, energy or energy-loss information and
particle identification [1]. They are constructed as large area silicon
detectors with segmented p-side and n-side contacts. The intersect-
ing areas of both side's segments form pixels. All signals on both
sides are read out through individual channels. For each event, the
channel numbers on both sides indicate the pixel that was hit by the
charged particle. Typical applications for DSSSDs make use of square
[1] or circular shapes [2] (see Fig. 1). In applications where energy
information is required, it is essential to calibrate the individual
segments of the DSSSD. We distinguish between “absolute” and
“intrinsic” calibration of such detectors in the following way: by
“absolute energy calibration”, we refer to a set of calibration
coefficients that map measured amplitudes to units of energy. A
set of coefficients can be obtained by recording spectra for all
segments using particle sources of known energy, such as α-sources,
or a particle beam from an accelerator. By analyzing these spectra,
single segment gains can be obtained in units of energy per ADC-
channel. In addition, pulsers can be used to inject charge with
calibrated value into the front end electronics (FEE)1 of all strips
[2], to correct for non-linearities in the FEE. For highly segmented
DSSSDs, this procedure is difficult for two reasons: first, the analysis
has to be performed for each channel, i.e. the effort increases with
the number of channels. Second, and more important, the active area

per segment decreases with higher segmentation. Consequently, a
long measurement time for calibration is required to accumulate a
sufficient number of events in the calibration spectra. This can be
exceedingly expensive if an accelerator is used as a calibration source.

An absolute calibration implies that all segments deliver
comparable information about the energy-loss of a particle, i.e.
the information does not depend on which strip was hit. If this is
the case, but the absolute energy scale is not determined, we call
this “intrinsic calibration”. Intrinsic calibration of the individual
strips of the detector is sufficient, for example in particle tracking
and identification applications [1,3].

A detector with pre-existing intrinsic calibration of the indivi-
dual strips is easier to calibrate absolutely with known sources.
The problem of increasing measurement time for highly segmen-
ted detectors does not occur, because the segmentation does not
matter anymore, as far as the calibration spectrum is concerned.

In this work we will show that it is possible to obtain an
intrinsic calibration for DSSSDs by using the correlations of p-side
and n-side data. We demonstrate this by presenting one possible
algorithm that exploits these correlations to obtain a set of
intrinsic calibration coefficients from any data set from the
detector. Further, we show results of its application to data from
a DSSSD, that was used as part of the Lund-York-Cologne-
CAlorimeter (LYCCA), a detector system for relativistic heavy-ion
identification and tracking. Finally, limitations and possible imp-
rovements of the method will be discussed.

2. Method

For a single event of energy deposition inside a DSSSD, the
created charge carriers induce signals in all electrical segments as
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they move within the detector volume. The measured signal
amplitudes depend on the geometry of the detector and its
segmentation, in particular, of the distance between the segment
and the location of charge carriers. Cross-talk between different
channels in the FEE can modify the signal amplitudes of all
channels. The presented algorithm neglects cross-talk in the FEE
and assumes that there is at least a fraction of events, where the
deposited energy

E¼ siAi ð1Þ
in the detector is proportional to a signal in channel i of amplitude
Ai, and that all other channel amplitudes are negligible:

AicAj for ia j: ð2Þ

The slope factor si is the only calibration coefficient for a given
channel i. In Section 4 we will generalize (1), allowing for an
additional offset in the energy dependence. Note that the principle
of correlating p-side and n-side information does not demand the
exclusion of cross-talk and multi-segment hits. However, this
simplified treatment turned out to be sufficient for achieving good
results as will be shown in Section 5.

The basic idea of the procedure is the following: given a DSSSD
with Np and Nn strips on the p-side and n-side, respectively, each
event that is registered in a given pixel will create a signal with
amplitude Ap in the strip number p on the p-side and a signal with
amplitude An in strip number n on the n-side (n; p¼ 1…Nn;p).
Assuming that both strips measure the same deposited energy E in
the active area of the detector, one can write

Ep ¼ spAp; En ¼ snAn and Ep ¼ En ¼ E ð3Þ
with sp and sn being the calibration coefficients (slopes) for the pth
p-side strip and the nth n-side strip, respectively. For each pixel
that was hit, the corresponding segments on both sides will
deliver signal amplitudes, Ap and An, that are unambiguously
related. Since we assume in this section that Eq. (1) is valid, this
relation between the two measured amplitudes is also linear
without offset

Ap ¼ SpnAn: ð4Þ
The slope Spn ¼ Ap=An of this line can be experimentally deter-
mined for each pixel, based on a given set of measured events. A
schematic representation of the relations can be seen in Fig. 2. For
each pixel, this slope can be visualized by plotting for each event
the amplitudes (Ap and An). Fig. 3 shows such a plot for measured
data of a single DSSSD pixel, which allows us to determine Spn and
its uncertainty ΔSpn for this pixel. The set of NpNn measured
Spn-values can be used to get a set of NpþNn calibration coeffi-
cients fsp; sng that best reproduces the set of measured fSpng. Both

sets are related by

Spn ¼
sn
sp

ð5Þ

which follows from Eqs. (3) and (4). One way of finding a set of 2N
calibration parameters fsp; sng is to minimize the following expres-
sion:

χ2 ¼
X
p;n

Spn�sn
sp

ΔSpn

0
BB@

1
CCA

2

ð6Þ

where ΔSpn is the experimental uncertainty for the pixel slopes
Spn. The calibration parameters that minimize (6), also fulfill the
condition (3) and therefore represent the best set of calibration
coefficients for a given input data set on an arbitrary scale, if the
simplifying assumptions are valid.

The proposed method, as described above, requires the follow-
ing conditions to be fulfilled: it is essential, that p-side and n-side
strips have intersection points and that both side's strips are read-
out. In addition, a sufficient amount of single-strip events has to be
present, i.e. events where Eq. (2) is valid. Events with inter-strip
hits on one or both sides will contribute to the background and
should be excluded from the calibration procedure. Note, that this
procedure could also be applied to detectors with segmentation on
one side only, as long as signals from all segments and the un-
segmented side are recorded.
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Fig. 1. Schematic view of two common configurations for DSSSDs: (a) shows a
rectangular shaped, (b) a circular shaped segmentation layout. Solid and dashed
lines indicate the borders of front-side and back-side segments, respectively.

Fig. 2. The relation between Ap and An for one single pixel of the detector (thick,
solid line) with slope Spn. In general, this line does not coincide with the diagonal
(dotted line). In (a) no offset is present, while in (b) an offset Opn is allowed (see
Section 4).
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Fig. 3. This plot shows a typical distribution p/n-side amplitude pairs (dots) for a
single pixel (p¼15, n¼15), after selecting single-strip events on both sides as
described in Section 2. Even though there is not much background, a simple χ2-fit
(thick, solid line) of the slope Spn misses the correct value. The inset shows a zoom-
in to the most densely populated part of the graph where the mismatch of data and
χ2-fit is obvious to the human eye. For comparison, the thin solid line shows the
result determined by our algorithm.
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3. Implementation

The presented implementation uses two essentially indepen-
dent steps: first, the determination of Spn and the uncertainty ΔSpn
for each pixel from measured data. Second, the calculation of a set
of calibration coefficients fsp; sng based on the set of fSpn;ΔSpng
from the first step. The former is done using a Bayesian [4]
approach and the latter is done by using a nonlinear least squares
fit algorithm. Both steps are described in the following two
subsections.

3.1. Determination of Spn

For all pixels, the slope coefficient Spn ¼ Ap=An is computed
from the data obtained from M selected events in the detector,
each event consisting of two amplitude measurements Ap;i;An;i

that obey (2). An obvious way to determine Spn would be a straight
line fit to the 2d-distribution of all amplitude pairs using a χ2

minimization procedure, as illustrated in Fig. 3. The slope of that
line would correspond to Spn. Doing so, the resulting Spn has a
systematic error, as can be seen in the inset of Fig. 3. This is
because the χ2 minimization procedure assumes a Gaussian
distribution of the individual points around the fitted function
and the result can be significantly changed if some points violate
this assumption. There are several suggestions in Ref. [4] to
overcome this problem. One approach is to assume distributions
with outreaching tails for data points around the fitted function,
such as the Cauchy–Lorentz distribution. This weakens the impact
of few outliers in the data. Instead of implementing such a fitting
routine and apply it to the input data, it is possible to compute a
probability distribution for the quantity of interest directly, by
repeated usage of Bayes’ theorem (7). This is simple to implement
because it requires for each event, a point-by-point multiplication
of two functions, namely the distribution based on all previous
events and the likelihood function of the current event. After
multiplication, a normalization step follows to qualify the result as
probability distribution. The details are described in the following
paragraphs.

Our goal is the computation of the posterior probability
distribution p SpnjfAp;AngM

� �
of the quantity of interest Spn for all

pixels of the detector. The notation was adopted from Ref. [4],
where pðxjyÞ dx is a function of the variable x that gives the
probability of having x in the interval ½x; xþdx� if some condition
(or information) y is given. We define the subset fAp;Angi≔
fAp;1;An;1;Ap;2;An;2;…;Ap;i;An;ig as the data obtained from the first
i measured events. Obviously, fAp;AngM is the set of all measured
events. The most likely value for the slope parameter Spn and its
error ΔSpn for each p and n can be obtained from the mean and
variance of the final posterior distribution. Calculating p SpnjfAp;

�
AngMÞ is done iteratively, treating one event after the other, while
the width of the distribution becomes narrower with each step.
The iteration starts with an initial guess for the p0 Spn

� �
distribu-

tion, in this case uniform within reasonable limits Smin and Smax.
These limits should cover all occurring values of Spn, which can be
estimated by the maximum expected ratio of gains in all channels:
Sminominðsn=spÞ and Smax4maxðsn=spÞ. For example, if the smal-
lest gain is expected to be no less than 10 times the largest gain,
Spn can be inside the interval ½0:1;10�. For each event, p0 Spn

� �
is

refined by applying Bayes' theorem [4–6]

pi SpnjfAp;Angi
� �¼ pi Spn

� �
L Ap;i;An;ijSpn
� �

p Ap;i;An;i
� � ð7Þ

with the commonly used terminology [4]: pi SpnjfAp;Angi
� �

is called
posterior distribution, pi Spn

� �
is the prior distribution, L Ap;i;An;ijSpn

� �
the likelihood function and p Ap;i;An;i

� �
is a normalization factor that

is also called evidence of the measured data. Index i indicates the
iteration step. After each event, the normalized posterior distribu-
tion becomes the prior for the next data point

piþ1 Spn
� �¼ pi SpnjfAp;Angi

� � ð8Þ
and the final distribution is obtained at the last iteration. The
likelihood function is chosen to be a Cauchy–Lorentz distribution
with width w

L Ap;i;An;ijSpn
� �

p
1

w2þ log
Ap;i

An;i
� log Spn

� �2: ð9Þ

This particular choice for the likelihood functionwas inspired by the
aforementioned treatment of fitting data with outliers in Ref. [4].
Other distributions were not tested, because satisfactory results
were obtained.

According to the central limit theorem, the posterior distribu-
tion approaches a Gaussian shape. However, no analytic expres-
sion for the distribution at intermediate steps of the calculation is
known. Thus, the posterior distribution has to be approximated by
a discrete number K of points between Smin and Smax. The value of
K depends on the chosen limits Smin;max and the desired accuracy
of the final result. Typical values are in the order of a few
thousand.

3.2. Computing a set of calibration coefficients

Minimization of Eq. (6) is done using the implementation of a
standard nonlinear least squares fit provided by the GNU Scientific
Library [7]. The set of fit parameters is fsp; sng and the input data is
the complete set of measured parameters fSpng. To allow for a
unique solution, one out of the NpþNn parameters has to be fixed,
for example by setting one of the p-side slopes to 1. The algorithm
attempts to minimize Eq. (6) with respect to the remaining
NpþNn�1 parameters. After convergence is reached, the resulting
parameter set describes the best intrinsic calibration coefficients
for the individual strips relative to each other on a common
arbitrary scale. The algorithmworks automatically in the following
sense: once a good parameter set (K ; Smin; Smax;w) is found for a
detector, intrinsic calibration coefficients can be found for it by
analyzing any measured data set.

4. Offset determination

For cases in which the offsets are not negligible, the method
can be extended to take them into account. This was done in the
following way: an offset o is added to Eq. (1)

E¼ oþsA: ð10Þ
If offsets are allowed, the linear dependence between Ap and An is also
allowed to have an offset Opn. This changes Eq. (4) into (see Fig. 2b)

Ap ¼OpnþSpnAn: ð11Þ
The first step, determination of Opn and Spn, can be achieved with two-
dimensional probability density functions p Spn;OpnjfAp;Ang

� �
. The

basic procedure is the same as described in Section 3.1. Only the
likelihood function has to be extended from Eq. (9) to be two-
dimensional, taking into account the correlation between offset and
slope:

L Ap;i;An;ijSpn;Opn
� �

p
1

w2þ log
Ap;i�Opn

An;i
� log Spn

� �2: ð12Þ

For the numerical approximation, a range of possible offset parameters
Opn has to be specified by two additional parameters, Omin and Omax.
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These limits have to be chosen such that they include all occurring Opn

as defined in Eq. (13). The numerical approximation of the two-
dimensional posterior distribution in a computer requires significantly
more memory and computation time than in the one-dimensional
case, but it is possible on nowadays desktop computers.

The second step, calculation of the coefficients for each strip,
has to be modified as well. All relevant quantities are related as in
Eq. (5), but with an additional equation for the offset:

Spn ¼
sn
sp

and Opn ¼
on�op

sp
: ð13Þ

With the modified relations of Eq. (13), the set of 2Npþ2Nn�2
calibration parameters fop; sp; on; sng can be found by minimizing
Eq. (14), which is an extended form of Eq. (6):

χ2 ¼
X
p;n

Spn�
sn
sp

ΔSpn

0
BB@

1
CCA

2

þ
Opn�

on�op
sp

ΔOpn

0
BB@

1
CCA

2

ð14Þ

where Spn;Opn and ΔSpn;ΔOpn are mean and variance of the final
distribution p Spn;OpnjfAp;Ang

� �
. Again, two parameters have to be

fixed to find a unique solution, for example oN¼0 and sN¼1.

5. Experimental data

The method was developed and tested, using data from one of
the DSSSDs of LYCCA [1], which is part of the PreSPEC-AGATA
setup [8] at the GSI Helmholtzzentrum for Heavy Ion Research.
Results shown here are based on data from the PreSPEC-AGATA
campaign in 2012. During that campaign, LYCCA contained 17
DSSSD modules, each being 300 μm thick. We present data for the
DSSSD close to the position of the secondary target with 32 strips
on both sides. The strip pitch is 1.8 mm, with an inter-strip
isolation of 30 μm. A schematic block diagram of the read-out
chain is shown in Fig. 4. More details about the FEE are described
in Ref. [1]. A primary beam of 86Kr was accelerated with the GSI
Universal Linear Accelerator (UNILAC) and the SchwerIonen Syn-
chrotron (SIS18). A mixture of different nuclear species was
created by the collision of the primary beamwith a thick beryllium
target. The GSI Fragment Separator (FRS) [9] was tuned to select an
almost pure beam of 85Br ions with kinetic energies of about
306 MeV/u when entering the DSSSD. Under these conditions
about 255 MeV are deposited inside the DSSSD, according to a
calculation with the computer program LISEþþ [10].

6. Results

In the following all presented data is after selecting single strip
events according to (2). Fig. 5 shows the amplitude of the n-side
plotted vs the amplitude of the p-side, for events with strip

multiplicity one on both sides. The histogram is the sum of all
pixels of the detector. Without calibration, the p-side and n-side
amplitudes are in general different from each other, resulting in a
broad structure around the An¼Ap diagonal. After applying the
calibration procedure described in this work, the outputs of all
pixels are aligned. This is verified by Fig. 6, where the amplitudes
were multiplied with their respective gain-match factors sp and sn.
The parameters for the algorithm were for the no-offset version
5000, 0.6, 1.4, 0.01 for K; Smin; Smax and w, respectively. For the
algorithm with offset determination, the parameter set was 800,
0.6, 1.4, 0.01, 200, �200 and 200 for Ks; Smin; Smax, w, Ko;Omin and
Omax, respectively.

In order to quantify the relative resolution of the detector at
different amplitudes, the disagreement between calibrated p-side
and n-side amplitudes spAp�snAn is plotted over the calibrated
p-side amplitude spAp in Fig. 7. This plot contains essentially the
same information as Fig. 6, but the diagonal is transformed onto
the spAp�axis, and allows for determination of the width of the
distribution by projecting to the other axis. If no offsets are
determined, the resulting calibration will have the best resolution
at the most intense part of the energy spectrum, where most of
the recorded events are situated. The resolution gets worse for
events where the amplitude differs significantly from the peak in
the spectrum. This effect is highlighted in Fig. 8, where the
achieved resolution for different regions of the amplitude spec-
trum is shown. If the full range of the spectrum is of relevance,
offsets should not be neglected. In the lower parts of the spectrum

Fig. 4. Custom made preamplifiers [1] are used to provide differential input signal
for the commercially available MSCF-16. These modules contain 16 channel shaping
amplifiers and timing filter amplifiers with leading edge discriminators. The MSCF-
16 output is recorded by two CAENv758 ADC and a CAENv757 TDC inside a VME
crate that is part of the PreSPEC MBS data-acquisition system.
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Fig. 5. Shown is an overlay histogram of n-side amplitude An vs p-side amplitude
Ap for all possible pairings of n and p. The broad structure can be interpreted as an
overlay of all lines with slopes Spn. After applying the calibration procedure, the
picture changes to Fig. 6.
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Fig. 6. Overlay histogram of calibrated n-side amplitude snAn vs calibrated p-side
amplitude spAp for all possible pairings of n and p. Calibration factors sn and sp were
determined using the method described in this work. Obviously, p- and n-side
energy measurements are in agreement, regardless of which pair of strips is hit.
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with less intensity, the resolution of the slope-only calibration is
significantly worse than the one including offsets.

The peaks in Fig. 8 can be used to estimate the relative
resolution of the detector. The width (FWHM) of that peak
amounts to Δ¼ 27:4 a:u. Assuming that both sides measure the
same energy independently with approximately the same accu-
racy, i.e. σp � σn � σ, the difference of the measurements of both
sides will have a width of Δ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
pþσ2

n

q
�

ffiffiffi
2

p
σ. If both, p and n-

side measurements are combined to form an average, the uncer-
tainty of the measured energy deposition can be approximated
with σ=

ffiffiffi
2

p
¼Δ=2. The peak width Δ is dominated by events with

an amplitude of around 2400 a.u. (see Fig. 6), which corresponds
to the energy loss of the 85Br particles. Thus, the relative resolution
in the most relevant region of the spectrum corresponds to 0.57%
at 255 MeV, which is well within the expected range between 0.5%
and 1%, as stated in Ref. [1]. This indicates that the calibration

method works correctly. Note that the method was tested for fast
particles, where none of them is stopped inside the detector
material. Since the only assumption is the agreement of n-side
and p-side charge collection, it should work as well for lower
energies when particles are implanted.

7. Possible improvements

In the procedure described here, the user has to fix the
parameters for the range of the probability distributions and their
density of points. If the range is not known, the user has to choose
a wide and fine enough grid for the representation of the
distribution and pays with longer computation time and more
memory consumption. Especially in the case of two-dimensional
distributions for gain and offset determination, this can reach the
limits of the available hardware in a common desktop computer.
Therefore, it would be a significant improvement in performance
and usability, if the probability distributions would be adaptive in
range and density of points. If such an improvement would be
implemented, the only remaining parameter would be the width
w of the likelihood function in Eqs. (9), (12).

For the calibration with offsets, there is a strong negative
correlation between the measured quantities Spn and Opn. This
could be taken into account by minimizing, instead of Eq. (14), the
expression

χ2cor ¼
X
p;n

Spn�
sn
sp
;Opn�

on�op
sp

� �
Cov�1

pn Spn�
sn
sp
Opn�

on�op
sp

� �
:

ð15Þ
with Cov�1

pn being the inverse of the covariance matrix of the
posterior probability distribution p SpnjfAp;AngM

� �
. This should

improve the precision of the calibration coefficients for the same
amount of data.

8. Summary

A reliable method for the intrinsic calibration of DSSSD strips
among each other was developed, implemented and tested with
in-beam production data. The main advantage over conventional
calibration procedures is the ability to work with any data set with
any kind of energy distribution. If an absolute energy calibration of
the detector is needed, the method can still be of considerable use
if it is applied before the absolute calibration, in which case the
detector can be treated as one device instead of a collection of
independent strips. Possible future improvements of the imple-
mentation have been suggested.
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